

THE SINGAPORE CERTIFIED ENERGY MANAGER (SCEM) TRAINING PROGRAMME AT PROFESSIONAL LEVEL

Modules:	Energy Recovery and Reuse	
	1. Objectives:	 Describe pinch analysis and its methodologies, benefits and applications Apply pinch analysis methods to find targets for heat exchanger networks Apply pinch analysis methodology to design and evolve heat exchanger networks Discuss other energy recovery techniques for chemical and process industries Analyze and improve energy efficiency of chemical, thermal and related processes
	2. Scope	 Introduction/Overview Energy Reuse and Efficiency; Heat Exchanger Networks; Pinch Analysis; Industrial Experience; Contents and Learning Outcomes Heat Exchangers Types, Basic Principles; Design Equations Pinch Analysis Concepts Main steps; Temperature-Enthalpy Diagram; Composite Curves, Problem Table, Pinch and its Significance; Grand Composite Curves; Choice of Minimum Driving Force; Heat Exchanger Network – Grid Representation and Design for Maximum Energy Recovery; Examples Targeting Utilities; Threshold Problems; Area and Number of Units; Optimal (DT)min; Examples Heat Exchanger Network Design Stream Splitting and Cyclic Matching; Network Relaxation; Threshold Problems; Examples Other Energy Recovery Techniques Waste Heat Recovery using Absorption Chillers; Recompression and Reuse of Vapor Streams; Power Recovery from High Pressure Streams; Use of High Efficiency Pumps, Compressors and Drivers; Process Modifications for Energy Efficiency Industrial Applications Case Studies (from Chemical Processes and/or Waste Heat Recovery Applications) Discussion on energy recovery and reuse techniques, their application including an integrated approach for improving energy efficiency of processes
	Trainers:	Prof Rangaiah Gade Pandu & Mr Tim Shire